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記号の定義と事実 I

定義 1

ϑa,b(z, τ) =
∑
n∈Zg

exp
(
πi(n+ 1

2a)τ
t
(n+ 1

2a) + 2πi(z + 1
2b)

t
(n+ 1

2a)
)

τ = (τjk)jk ∈ Sg：g × g の対称複素行列で, 虚部が正定値なもの
z = (z1, . . . , zg) ∈ Cg: 複素変数
a, b ∈ Zg

a
2 ,

b
2：指標

特別な場合：
g = 1：Jacobiテータ関数 (S1 = H：上半平面)

g ≥ 2：Riemannテータ関数 (Sg: Siegel上半空間)

z = 0：テータ定数, ϑa,b(τ)
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記号の定義と事実 II

定義 2 (Lauricella’s hypergeometric series FD)

FD (α, β, γ; z) =

∞∑
n1,...,nm≥0

(α,
∑m

j=1 nj)
∏m

j=1(βj , nj)

(γ,
∑m

j=1 nj)
∏m

j=1(1, nj)

m∏
j=1

z
nj

j ,

z = (z1, . . . , zm), β = (β1, . . . , βm) ∈ Cm

|zj | < 1 (j = 1, . . . ,m)

α, γ ∈ C, γ 6= 0,−1,−2, . . .

Fact

FD (α, β, γ; z) =
Γ(γ)

Γ(α)Γ(γ − α)

∫ 1

0
tα(1− t)γ−α

m∏
j=1

(1− zjt)
−βj

dt

t(1− t)
.

ただし Re(γ) > Re(α) > 0.
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Gauss’s Arithmetic-Geometric Mean, Gauss AGM I

定理 (Gaussの算術幾何平均)

初期値 0 < b0 ≤ a0 をとる
以下の漸化式で定まる数列を考える：

an+1 =
an + bn

2
, bn+1 =

√
anbn

これらは共通の極限 MG(a0, b0) に収束する．
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Gauss’s Arithmetic-Geometric Mean, Gauss AGM II

Gauss AGMの本質は Gaussの超幾何級数による表示であるが, 解析的な
側面以外にも代数幾何学的な側面を持つ:

定理 (Gauss 1799–1818, Jacobi)

Legendre標準形により定まる楕円曲線族 w2 = z(z − λ)(z − 1),
λ ∈ C \ {0, 1} の周期は次のように書ける:

τ(λ) = i
F
(
1
2 ,

1
2 , 1; 1− λ

)
F
(
1
2 ,

1
2 , 1;λ

) ∈ H

このとき, λ = 1− b20
a20

(a0 6= b0) に対して, 以下が成り立つ：

a0
MG(a0, b0)

= ϑ00(τ(λ))
2 = F

(
1

2
,
1

2
, 1;λ

)
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Gauss’s Arithmetic-Geometric Mean, Gauss AGM III

a0
MG(a0, b0)

= ϑ00(τ(λ))
2 = F

(
1

2
,
1

2
, 1;λ

)
, λ = 1− b20/a

2
0

この等式を示すために, 以下の性質が重要である：

MG

(
a+ b

2
,
√
ab

)
= MG(a, b) (シフト不変性)

aMG(1, b/a) = MG(a, b) (同次性)

ϑ00(2τ)
2 =

ϑ00(τ)
2 + ϑ01(τ)

2

2
ϑ01(2τ)

2 = ϑ00(τ)ϑ01(τ) for ∀τ ∈ H (2τ -formula)

ϑ00(τ(x))
2 = F

(
1

2
,
1

2
, 1;x

)
for ∀x ∈ C \ {0, 1} (Jacobi’s formula)
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Gauss’s Arithmetic-Geometric Mean, Gauss AGM IV

補題 4

λ の復元 : λ = ϑ10(τ(λ))
4/ϑ00(τ(λ))

4 (λ = 1− b20/a
2
0 6= 0, 1)

Jacobi’s identity : ϑ00(τ)
4 = ϑ10(τ)

4 + ϑ01(τ)
4 for ∀τ ∈ H

b20/a
2
0 = 1− ϑ10(τ)

4/ϑ00(τ)
4 = ϑ01(τ)

4/ϑ00(τ)
4 より

b0/a0 = ϑ01(τ)
2/ϑ00(τ)

2.

再掲
a0

MG(a0, b0)
= ϑ00(τ(λ))

2 = F

(
1

2
,
1

2
, 1;λ

)
, λ = 1− b20/a

2
0
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Gauss’s Arithmetic-Geometric Mean, Gauss AGM V

証明： 2τ -formulaと Jacobi’s formulaを用いることで示される:

MG(a0, b0) = a0MG(1, b0/a0) = a0MG(1, ϑ01(τ)
2/ϑ00(τ)

2)

=
a0

ϑ00(τ)2
MG(ϑ00(τ)

2, ϑ01(τ)
2)

=
a0

ϑ00(τ)2
MG

(
ϑ00(τ)

2 + ϑ01(τ)
2

2
, ϑ00(τ)ϑ01(τ)

)
=

a0
ϑ00(τ)2

MG

(
ϑ00(2τ)

2, ϑ01(2τ)
2
)

= · · · = a0
ϑ00(τ)2

lim
n→∞

MG

(
ϑ00(2

nτ)2, ϑ01(2
nτ)2

)
=

a0
ϑ00(τ)2

MG(1, 1) =
a0

ϑ00(τ)2
= a0F

(
1

2
,
1

2
, 1;λ

)−1
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Gauss’s Arithmetic-Geometric Mean, Gauss AGM VI

Gauss AGM

Jacobi Theta Function Gauss HG Series

2τ -formula HGDE

Jacobi’s Formula

2τ -formula

ϑ00(2τ)
2 =

ϑ00(τ)
2 + ϑ01(τ)

2

2
, ϑ01(2τ)

2 = ϑ00(τ)ϑ01(τ) for ∀τ ∈ H,

Jacobi’s formula

ϑ00(τ(x))
2 = F

(
1

2
,
1

2
, 1;x

)
for ∀x ∈ C \ {0, 1},
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Borchardt 1876 I

0 < d0 ≤ c0 ≤ b0 ≤ a0 とするとき, 漸化式

an+1 =
an + bn + cn + dn

4
, bn+1 =

√
anbn +

√
cndn

2
,

cn+1 =

√
ancn +

√
bndn

2
, dn+1 =

√
andn +

√
bncn

2
,

によって定まる数列 {an}, {bn}, {cn}, {dn} は共通の極限
MB(a0, b0, c0, d0) (Borchardt AGMと呼ぶ)に収束する.

この平均は Gauss AGMと同様に同次性とシフト不変性を満たす.

MB(a0, a0, b0, b0) = MG(a0, b0).
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Borchardt 1876 II

Borchardtは種数 2の超楕円曲線

y2 = −(x− u1)(x− u2)(x− u3)(x− u4)(x− u5),

u1 > u2 > u3 > u4 > u5

の周期 τ ∈ S2 に対して定まる Riemannテータ定数を考えた.
Borchardtの場合においても変換 τ 7→ 2τ により平均を生み出す公式が与
えられている:

ϑ00,00(2τ)
2 =

ϑ00,00(τ)
2 + ϑ00,10(τ)

2 + ϑ00,01(τ)
2 + ϑ00,11(τ)

2

4
,

ϑ00,10(2τ)
2 =

ϑ00,00(τ)ϑ00,10(τ) + ϑ00,01(τ)ϑ00,11(τ)

2
,

ϑ00,01(2τ)
2 =

ϑ00,00(τ)ϑ00,01(τ) + ϑ00,10(τ)ϑ00,11(τ)

2
,

ϑ00,11(2τ)
2 =

ϑ00,00(τ)ϑ00,11(τ) + ϑ00,10(τ)ϑ00,01(τ)

2
.
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Borchardt 1876 III

Thomaeの公式

ϑ00,00(τ)
2 =

detΩ

4π2

√
(u1 − u3)(u1 − u5)(u3 − u5)(u2 − u4)

ϑ00,10(τ)
2 =

detΩ

4π2

√
(u2 − u3)(u2 − u5)(u3 − u5)(u1 − u4)

ϑ00,01(τ)
2 =

detΩ

4π2

√
(u1 − u4)(u1 − u5)(u4 − u5)(u2 − u3)

ϑ00,11(τ)
2 =

detΩ

4π2

√
(u2 − u3)(u2 − u5)(u3 − u5)(u1 − u4)

Ω: ある基底に関する B周期
このような, テータ定数と分岐点に関する関係式をThomae型公式と呼ぶ.
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Borchardt 1876 IV

Borchardt自身は (テータ定数と超幾何級数の等式の意味で)Jacobiの
公式の類似や, Borchardt AGMの初期値と代数曲線族の周期の対応
は示していない
Matsumoto and Terasoma 2010で, K3曲面族の Thomae型公式を示
すことにより Borchardt AGMの 4変数超幾何級数による表示が与え
られている
Kummer locus(K3曲面族で, 周期写像の像が 2次 Siegel上半空間の
点になるもの)に制限することにより 4変数の超幾何級数が 3変数の
超幾何級数になり古典的な Thomaeの公式が得られる
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J. M. Borwein and P. B. Borwein 1991 I

0 < b0 ≤ a0 とするとき, 漸化式

an+1 =
an + 3bn

4
, bn+1 =

√
an + bn

2
bn,

によって定まる数列 {an}, {bn} は共通の極限 MBor(a0, b0) (Borwein
AGMと呼ぶ)に収束する.

α(τ) = ϑ00(τ)
4 + ϑ10(τ)

4, β(τ) = ϑ00(τ)
4 − ϑ10(τ)

4,

は変換 τ 7→ 2τ によって

α(2τ) =
α(τ) + 3β(τ)

4
, β(2τ) =

√
α(τ) + β(τ)

2
β(τ),

を満たす.
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J. M. Borwein and P. B. Borwein 1991 II

α(τ) = ϑ00(τ)
4 + ϑ10(τ)

4, β(τ) = ϑ00(τ)
4 − ϑ10(τ)

4,

命題 5 (J. M. Borwein and P. B. Borwein 1991, Theorem 2.6)

1 0 < h < 1 に対し,

1

MBor(1, h)
= F

(
1

4
,
3

4
, 1; 1− h2

)2

2 h = β(τ)/α(τ) (τ ∈ H) とおくとき,

F

(
1

4
,
3

4
, 1; 1− h2

)2

= α(τ) = ϑ00(τ)
4 + ϑ10(τ)

4

Borwein AGMの場合にも, Borwein AGMの初期値と周期の対応が示され
ていない.
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Kato and Matsumoto 2009 I

0 < d0 ≤ c0 ≤ b0 ≤ a0 に対し拡張された 4種類の 4項平均

an+1 =
an + bn + cn + dn

4
, bn+1 =

√
an + dn

2

bn + cn
2

,

cn+1 =

√
an + cn

2

bn + dn
2

, dn+1 =

√
an + bn

2

cn + dn
2

,

によって定まる数列 {an}, {bn}, {cn}, {dn} は共通の極限
M(a0, b0, c0, d0) に収束する.

M(a0, b0, b0, b0) = MBor(a0, b0)

M(a0, a0, b0, b0) 6= MG(a0, b0)
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Kato and Matsumoto 2009 II

命題 6 (Kato and Matsumoto 2009, Theorem 1.)

1

M(1, y1, y2, y3)
= FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1; 1− y21, 1− y22, 1− y23

)2

,

この命題は Lauricella FD の超幾何微分方程式 (の定める Pfaff系)を用い
て証明された.

M(a0, b0, c0, d0)

Riemann Theta Function Lauricella’s HG Series FD

Kato and Matsumoto 2009

この 4種 4項平均の反復極限 M(1, y1, y2, y3) もまた Gauss AGMと同様
の構図が成り立つような代数幾何学背景を持つこと与えた.
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Kato and Matsumoto 2009 III

本講演では, 次の公式の類似公式を与えることにより M(a0, b0, c0, d0) の
Lauricella FD による表示の別証明を与える.

ϑ00(2τ)
2 =

ϑ00(τ)
2 + ϑ01(τ)

2

2
, ϑ01(2τ)

2 = ϑ00(τ)ϑ01(τ) for ∀τ ∈ H

ϑ00(τ(x))
2 = F

(
1

2
,
1

2
, 1;x

)
for ∀x ∈ C \ {0, 1}

定理 7 (M., N., Jacobi’s Formulaの類似, 主定理)

1

M(1, y1, y2, y3)
=

Γ(3/4)4

π

(
ϑ0000,0000(τ(v)

♯)2 + ϑ1100,0000(τ(v)
♯)2
)

= FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1; 1− y21, 1− y22, 1− y23

)2
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観察 I

1

MG(1, b0/a0)
= ϑ00(τ(λ))

2 = F

(
1

2
,
1

2
, 1;λ

)
,

τ(λ) = i
F
(
1
2 ,

1
2 , 1; 1− λ

)
F
(
1
2 ,

1
2 , 1;λ

) , λ = 1− b20
a20

.

F
(
1
2 ,

1
2 , 1;λ

) の分子分母を周期積分に持つような代数曲線族は
w2 = z(z − λ)(z − 1) (λ ∈ C \ {0, 1})

である.
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観察 II

1

M(1, y1, y2, y3)
= FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1; 1− y21, 1− y22, 1− y23

)2

FD

(
1
4 ,

1
4 ,

1
4 ,

1
4 , 1; 1− y21, 1− y22, 1− y23

) を周期として持つような代数
曲線族を考える必要がある.

Deligne–Mostowの理論から

C(x) : w4 = z(z − x1)(z − x2)(z − x3)(z − 1),

x = (x1, x2, x3) ∈ {(z1, z2, z3) ∈ C3 | zj 6= zk, z1, z2, z3 6= 0, 1},

を考えると, dz/w の [1,∞] における積分に
FD

(
1
4 ,

1
4 ,

1
4 ,

1
4 , 1;x1, x2, x3

) が現れる.
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観察 III

構想
x = (x1, x2, x3) ∈ X に対して定まる “周期行列” τ を考える.
y2j = 1− xj としたとき,

yj = bj(τ)/a(τ)

となるような関数 a(τ), b1(τ), b2(τ), b3(τ) と変換 R で,

a(R · τ) = a(τ) + b1(τ) + b2(τ) + b3(τ)

4
,

b1(R · τ) =
√
(a(τ) + b3(τ))(b1(τ) + b2(τ))

2
,

b2(R · τ) =
√
(a(τ) + b2(τ))(b1(τ) + b3(τ))

2
,

b3(R · τ) =
√
(a(τ) + b1(τ))(b2(τ) + b3(τ))

2
.

となるものが見つかれば良い.
NAKANO R. (北大数学専攻 D2) 20 / 50



主定理

1 テータ定数と分岐点の関係を記述した Thomae型の公式
2 テータ定数と Lauricella FD の関係を記述した Jacobiの公式の類似
3 Borwein AGMにおける, 保型関数 α(τ), β(τ) ・平均を生み出す変換

τ 7→ 2τ の拡張 (保型関数 a, b1, b2, b3 の決定)
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代数曲線 C(x) I

定義 8

C(x) : w4 = z(z − x1)(z − x2)(z − x3)(z − 1)

x = (x1, x2, x3) ∈ X

ただし,

X = {(x1, x2, x3) ∈ C3 | xj 6= 0, 1 (j = 1, 2, 3), xj 6= xk (j 6= k)}.

命題 9 (M., N.)

pr: C(x) 3 (z, w) 7→ z ∈ P1 とするとき, (C(x), pr) は 6 点 0, x1, x2,
x3, 1,∞ を branch pointsとする P1 の巡回 4重分岐被覆であり, 種数 6の
閉 Riemann面である.

定義 10

Pj = pr−1(j) (j = 0, 1, x1, x2, x3) とする.
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代数曲線 C(x) II

ρ: ρ(z, w) = (z, iw) で定まる pr の被覆変換
通常, 周期写像はホモロジー群とコホモロジー群のペアリングから定まる
行列を用いて定義するが, 本講演では変換 (ρ2)∗ の (−1)-固有空間等で議
論を進める.

定義 11

H−
1 (C(x),Z): (ρ2)∗ の (−1)-固有空間

H0
−(C(x),Ω1): (ρ2)∗ の (−1)-固有空間
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代数曲線 C(x) III

命題 12 (M., N.)

ϕ1 =
dz

w
, ϕ2 =

dz

w3
, ϕ3 =

zdz

w3
, ϕ4 =

z2dz

w3
, ϕ5 =

dz

w2
, ϕ6 =

zdz

w2

は H0(C(x),Ω1) の基底を成す

命題 13 (M., N.)

ϕ1, . . . , ϕ4 は H0
−(C(x),Ω1) の基底を成す
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代数曲線 C(x) IV

× × × × × ×∞ 0 x1 x2 x3 1

I1 I2 I3 I4 I5

I6

Figure: 経路 I1, . . . , I6

0 < x1 < x2 < x3 < 1

命題 14 (M., N.){
ρk(1− ρ2)Ij | j = 1, 3, 4, 6, k = 0, 1

} は H−
1 (C(x),Z) を張る

NAKANO R. (北大数学専攻 D2) 25 / 50



代数曲線 C(x) V

命題 15 (M., N.)

cj = (1− ρ2)Ij と表すとき,

A1 = (1 + ρ)c1, A2 = ρc6, A3 = −(1 + ρ)c3 − ρc4, A4 = c4,

B1 = c6, B2 = (1− ρ)c1, B3 = −(1− ρ)c3 − c4, B4 = −ρc4.

L = 〈A1, . . . , A4, B1, . . . , B4〉Z ⊂ H−
1 (C(x),Z) : 指数 4 の部分格子

交点行列: 2J8 = 2

(
O4 −I4
I4 O4

)
ρ の作用:

(
ρ(A)
ρ(B)

)
=

(
O4 −U
U O4

)(
A
B

)
, U =


1

1
1

1


任意の x ∈ X に対して各サイクルを解析接続を行い先ほど構成したシン
プレクティック基底を定める (基点と解析接続のパス依存)
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周期
1 背景

記号の定義と事実
Gauss’s Arithmetic-Geometric Mean, Gauss AGM
Borchardt 1876
J. M. Borwein and P. B. Borwein 1991
Kato and Matsumoto 2009
観察

2 本編
代数曲線 C(x)
周期
周期写像の逆写像の構成
Thomae型公式・Jacobiの公式の類似
主定理

3 おまけ
Borwein AGMへの退化
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周期 I

定義 16

τA =

(∫
Aj

ϕk

)
j,k

, τB =

(∫
Bj

ϕk

)
j,k

とする.

命題 17 (M., N.)

τ = τAτ
−1
B ∈ S4

命題 18 (M., N.)

τ = iU

(
I4 −

2
tvUv

v tvU

)

v: τB の第 1列
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周期 II

命題 19 (M., N.)

v =
t(∫

B1

dz

w
,

∫
B2

dz

w
,

∫
B3

dz

w
,

∫
B4

dz

w

)

とする. v を射影化したとき, v ∈ P3 はHermite形式 U =


1

1
1

1


が定める複素超球の元である:

v ∈ B3 = {ξ ∈ P3 | ξ∗Uξ < 0}.

定義 20

(x1, x2, x3) ∈ X の周期への対応 X → B3 は局所的に一価正則であ
る. ΓU をモノドロミー群とする.

per : X → ΓU\B3 を周期写像と呼ぶ.
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周期 III

Fact (Yoshida 1997)

X は ΓU\B3 の稠密開集合と同型.

命題 22 (M., N.)

τ(v) := ı(v) = iU

(
I4 −

2
tvUv

v tvU

)
(v ∈ B3)

ı : B3 → S4 は埋め込みとなる
v = per(x1, x2, x3), τA =

(∫
Aj

ϕk

)
j,k
, τB =

(∫
Bj

ϕk

)
j,k
とするとき,

τ(v) = τAτ
−1
B

NAKANO R. (北大数学専攻 D2) 29 / 50



周期 IV

定義 23

ϑa,b(v) = ϑa,b(τ(v)) (v ∈ B3): テータ定数の埋め込みによる引き戻し

定義 24

U(U,C) = {g ∈ GL(4,C) | g∗Ug = U}
Sp(8,R) = {M ∈ SL(8,R) | MJ8

tM = J8}

U(U,C): 射影化すると B3 の自己同型群となる, ユニタリ群
Sp(8,R): 射影化すると S4 の自己同型群, シンプレクティック群
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周期写像の逆写像の構成
1 背景

記号の定義と事実
Gauss’s Arithmetic-Geometric Mean, Gauss AGM
Borchardt 1876
J. M. Borwein and P. B. Borwein 1991
Kato and Matsumoto 2009
観察

2 本編
代数曲線 C(x)
周期
周期写像の逆写像の構成
Thomae型公式・Jacobiの公式の類似
主定理

3 おまけ
Borwein AGMへの退化
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周期写像の逆写像の構成 I

楕円曲線の場合に Abel–Jacobi写像によりテータ定数を引き戻した関数を
調べることにより周期写像の逆写像を与えることができた.

λ =
ϑ10(τ(λ))

4

ϑ00(τ(λ))4

本講演の場合においても Abel–Jacobi写像の類似物を導入することにより
周期写像の逆写像の構成を行った.

定理 25 (M., N.)

v = per(x1, x2, x3) とする.

x1 =
4ϑ0000,0000(v)

2ϑ1000,0100(v)
2

(ϑ0000,0000(v)2 + ϑ1000,0100(v)2)2
,

x2 =
4ϑ0010,0001(v)

2ϑ1010,0101(v)
2

(ϑ0010,0001(v)2 + ϑ1010,0101(v)2)2
,

x3 =
4ϑ0011,0000(v)

2ϑ1011,0100(v)
2

(ϑ0011,0000(v)2 + ϑ1011,0100(v)2)2
.

x1, x2, x3 の表示の分母は共通であってほしい
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Thomae型公式・Jacobiの公式の類似
1 背景

記号の定義と事実
Gauss’s Arithmetic-Geometric Mean, Gauss AGM
Borchardt 1876
J. M. Borwein and P. B. Borwein 1991
Kato and Matsumoto 2009
観察

2 本編
代数曲線 C(x)
周期
周期写像の逆写像の構成
Thomae型公式・Jacobiの公式の類似
主定理

3 おまけ
Borwein AGMへの退化
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Thomae型公式・Jacobiの公式の類似 I

定理 26 (M., N., Thomae型公式)

v =
t(∫

B1

dz
w ,
∫
B2

dz
w ,
∫
B3

dz
w ,
∫
B4

dz
w

)
とする. このとき,

ϑ0000,0000(v)
2 + ϑ1000,0100(v)

2 = −
tvUv

4πΓ(3/4)4
,

ϑ0010,0001(v)
2 + ϑ1010,0101(v)

2 = −
tvUv

8πΓ(3/4)4
,

ϑ0011,0000(v)
2 + ϑ1011,0100(v)

2 = −
tvUv

8πΓ(3/4)4
,

証明： 左辺と tvUv の比を取り, ΓU\B3 の佐武コンパクト化で加わるカ
スプへの極限を調べることにより示さる.

系 27

ϑ0000,0000(v)
2 + ϑ1000,0100(v)

2

2
= ϑ0010,0001(v)

2 + ϑ1010,0101(v)
2

= ϑ0011,0000(v)
2 + ϑ1011,0100(v)

2
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Thomae型公式・Jacobiの公式の類似 II

系 28

1− x1 =

(
ϑ0000,0000(v)

2 − ϑ1000,0100(v)
2

ϑ0000,0000(v)2 + ϑ1000,0100(v)2

)2

,

1− x2 =

(
ϑ0100,1000(v)

2 + ϑ1111,1111(v)
2

ϑ0000,0000(v)2 + ϑ1000,0100(v)2

)2

,

1− x3 =

(
ϑ0100,1000(v)

2 − ϑ1111,1111(v)
2

ϑ0000,0000(v)2 + ϑ1000,0100(v)2

)2

.
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Thomae型公式・Jacobiの公式の類似 III

補題 29 (M., N.)

N =

(
P −Q
Q P

)
∈ Sp(8,Z), P = diag(1, 0, 1, 1), Q = diag(0, 1, 0, 0),

とする.
このとき, τ ∈ S4 に対し det(Qτ + P ) = τ22.

特に τ = τ(v) (v ∈ B3) であるとき, tvUv = − 2i

τ22
v21.

v =
t(∫

B1

dz
w ,
∫
B2

dz
w ,
∫
B3

dz
w ,
∫
B4

dz
w

)
に対して

v1 =
√
2πFD

(
1

4
,
1

4
,
1

4
,
1

4
, 1;x1, x2, x3

)
.
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Thomae型公式・Jacobiの公式の類似 IV

定理 30 (M., N., Jacobi’s Formulaの類似)

Γ(3/4)4

π

(
ϑ0000,0000(τ(v)

♯)2 + ϑ0000,1100(τ(v)
♯)2
)

=FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1;x1, x2, x3

)2

v = per(x1, x2, x3)

τ(v)♯ = N · τ(v)

NAKANO R. (北大数学専攻 D2) 35 / 50



主定理
1 背景

記号の定義と事実
Gauss’s Arithmetic-Geometric Mean, Gauss AGM
Borchardt 1876
J. M. Borwein and P. B. Borwein 1991
Kato and Matsumoto 2009
観察

2 本編
代数曲線 C(x)
周期
周期写像の逆写像の構成
Thomae型公式・Jacobiの公式の類似
主定理

3 おまけ
Borwein AGMへの退化
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主定理 I

a(v) = ϑ0000,0000(τ(v)
♯)2 + ϑ1100,0000(τ(v)

♯)2,

b1(v) = ϑ0000,0000(τ(v)
♯)2 − ϑ1100,0000(τ(v)

♯)2,

b2(v) = ϑ0000,1100(τ(v)
♯)2 + ϑ1111,1111(τ(v)

♯)2,

b3(v) = ϑ0000,1100(τ(v)
♯)2 − ϑ1111,1111(τ(v)

♯)2.

と, 変換R =
1

1− i


1

2
1 −i
−i 1

 ∈ U(U,Q(i)) により平均が生み出

される. この行列 R を平均生成変換 (mean generating matrix)と呼ぶ.

v = per(x1, x2, x3) (0 < x1 < x2 < x3 < 1)

τ(v)♯ = N · τ(v)
bj(v)

2/a(v)2 = 1− xj
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主定理 II

a(Rv) =
a(v) + b1(v) + b2(v) + b3(v)

4
,

b1(Rv) =

√
(a(v) + b3(v))(b1(v) + b2(v))

2
,

b2(Rv) =

√
(a(v) + b2(v))(b1(v) + b3(v))

2
,

b3(Rv) =

√
(a(v) + b1(v))(b2(v) + b3(v))

2
.
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主定理 III

定理 31 (M., N. 主定理)

a0 ≥ b0 ≥ c0 ≥ d0 > 0 とする.

a0
M(a0, b0, c0, d0)

=
Γ(3/4)4

π

(
ϑ0000,0000(τ(v)

♯)2 + ϑ0000,1100(τ(v)
♯)2
)

=a(v)

y1 = b0/a0, y2 = c0/a0, y3 = d0/a0

v = per(1− y21, 1− y22, 1− y23)

τ(v)♯ = N · τ(v)

Kato and Matsumoto 2009 主定理
Γ(3/4)4

π
a(v) = FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1; 1− y21, 1− y22, 1− y23

)2
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主定理 IV

主定理の証明：

M(a0, b0, c0, d0)

=a0M(1, y1, y2, y3)

=a0M

(
1,

b1(v)

a(v)
,
b2(v)

a(v)
,
b3(v)

a(v)

)
=

a0
a(v)

M (a(v), b1(v), b2(v), b3(v))

=
a0
a(v)

M (a(Rv), b1(Rv), b2(Rv), b3(Rv))

= · · · = a0
a(v)

M
(
a(R4nv), b1(R

4nv), b2(R
4nv), b3(R

4nv)
)

である. ここで,

R4n = diag(−1/4,−4, 1, 1)n
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主定理 IV

より,

lim
n→∞

R4nv ≡ lim
n→∞

t(
4−2n v1

v2
, 1,−4−n v3

v2
,−4−n v4

v2

)
= t(0, 1, 0, 0)

であることに注意すると,

lim
n→∞

a(Rnv) = lim
n→∞

bj(R
nv) =

π

Γ(3/4)4

であることがわかる. 実際,

v(t) = t(1,−t, 0, 0) ∈ B3 for t > 0

を考えると, τ(v(t))♯ = diag

(
i

t
,
i

t
, i, i

)
であることから

a(v(t)) = ϑ0000,0000(τ(v(t))
♯)2 + ϑ1100,0000(τ(v(t))

♯)2
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主定理 IV

=

(
ϑ00

(
i

t

)4

+ ϑ10

(
i

t

)4
)
ϑ00(i)

4

→
t↓0

(1 + 0)ϑ00(i)
4 = ϑ00(i)

4

が従う. ここで,

補題 32 (Chiba and Matsumoto 2023, Remark 4.6)

ϑ00(i) =
π1/4

Γ(3/4)

より主張を得る.
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主定理 V

Jacobi’s Formulaの類似と主定理を合わせることにより
Kato and Matsumoto 2009, Theorem 1.

1

M(1, y1, y2, y3)
= FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1; 1− y21, 1− y22, 1− y23

)2

,

の別証明を与えた.

M(a0, b0, c0, d0)

Riemann Theta Function Lauricella’s HG Series FD

Kato and Matsumoto 2009

今回の結果は, M(a0, b0, c0, d0) が, 代数曲線の周期とテータ定数の保型
性を通じて Lauricella FD と結びつくことを具体的に示したものである.
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1 背景
記号の定義と事実
Gauss’s Arithmetic-Geometric Mean, Gauss AGM
Borchardt 1876
J. M. Borwein and P. B. Borwein 1991
Kato and Matsumoto 2009
観察

2 本編
代数曲線 C(x)
周期
周期写像の逆写像の構成
Thomae型公式・Jacobiの公式の類似
主定理

3 おまけ
Borwein AGMへの退化
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Borwein AGMへの退化
1 背景

記号の定義と事実
Gauss’s Arithmetic-Geometric Mean, Gauss AGM
Borchardt 1876
J. M. Borwein and P. B. Borwein 1991
Kato and Matsumoto 2009
観察

2 本編
代数曲線 C(x)
周期
周期写像の逆写像の構成
Thomae型公式・Jacobiの公式の類似
主定理

3 おまけ
Borwein AGMへの退化
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Borwein AGMへの退化 I

補題 33

x1 = x2 = x3 であるとき, per(x1, x2, x3) =
t(v1, v2, 0, 0) である.

τ(v)♯ = diag

(
−v2
v1

i,−v2
v1

i, i, i

)
,

Rv =
1

1− i

((
1

2

)
⊕
(

1 −i
−i −1

))
v ≡ t(v1, 2v2, 0, 0),

τ(Rv)♯ = τ(v)♯ diag(2, 2, 1, 1)

である. 退化したとき, 2 倍写像が見えている.

注意 34 ΓU\B3 を Satakeコンパクト化した際, X の C3 から抜かれてい
た超平面が埋まりその上に周期写像が伸びるため一致させる写像が正当
化される. ♦
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Borwein AGMへの退化 II

τ0 = −iv2/v1 と置く. τ(v)♯ が対角行列であることから Riemannテータ
定数は Jacobiテータ定数の積に分解されることに注意すると保型関数
a(v), b1(v), b2(v), b3(v) の Borwein AGMへの退化が α(τ), β(τ) となるこ
とがわかる.

a(v) = ϑ

[
0000
0000

]
(τ(v)♯)2 + ϑ

[
1100
0000

]
(τ(v)♯)

=
(
ϑ00 (τ0)

4 + ϑ10 (τ0)
4
)
ϑ00(i)

4

= ϑ00(i)
4α(τ0)

b1(v0) = ϑ

[
0000
0000

]
(τ(v)♯)2 − ϑ

[
1100
0000

]
(τ(v)♯)2

=
(
ϑ00(τ0)

4 − ϑ10(τ0)
4
)
ϑ00(i)

4 = ϑ00(i)
4β(σ),

同様に b1(v) = b2(v) = b3(v).
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Borwein AGMへの退化 III

a(v) = ϑ00(i)
4α(τ0)

b1(v) = b2(v) = b3(v) = ϑ00(i)
4β(τ0)

ϑ00(i)
4 =

π

Γ(3/4)4

(
1

Borwein AGM
=

)
Γ(3/4)4

π
a(v) =

Γ(3/4)4

π
ϑ00(i)

4α(τ0) = α(τ0)

Borwein AGMの結果も退化することにより得られる
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Borwein AGMへの退化 IV

積分表示の方は明らかに退化する:

FD

(
1

4
,
1

4
,
1

4
,
1

4
, 1;x, x, x

)
=

1√
2π

∫ 1

0
t
1
4 (1− t)

3
4

3∏
j=1

(1− xt)−
1
4

dt

t(1− t)

=
1√
2π

∫ 1

0
t
1
4 (1− t)

3
4 (1− xt)−

3
4

dt

t(1− t)

= F

(
1

4
,
3

4
, 1;x

)
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Borwein AGMへの退化 V

Borwein AGMを与える代数曲線族は
w4 = z(z − x)3(z − 1), x ∈ C \ {0, 1}

であり, 周期は

τ0(x) = (1− i)

∫ 0

−∞

dz

w

/∫ ∞

1

dz

w

=
√
2i F

(
1

4
,
3

4
, 1; 1− x

)/
F

(
1

4
,
3

4
, 1;x

)
∈ H

である. Borwein AGMの初期値 a0 > b0 に対して x = 1− b20/a
2
0 とする

ことにより
a0

MBor(a0, b0)
= ϑ00(τ0(x))

4 + ϑ10(τ0(x))
4

となる.
種数は 3 であるが, Prym多様体と周期を考えると周期行列が
diag(τ0, τ0) となり Borwein兄弟の結果まで周期行列のサイズが落ちる.
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Borwein AGMへの退化 V

平均生成変換の求め方

開始

配置 x1 を
1 つ選ぶ

x1 の近傍から
x2, x3, x4 を選ぶ per(xj) を計算

x′
j : xj の平均反復
per(x′

j) を計算

R :=
per(x′

j) per(xj)
−1

R はシンプルか? 終了
モノドロミー
とみなし
x2, x3, x4

を再選択

はいいいえ
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